
Evaluation of Long-Held HTTP Polling for
PHP/MySQL Architecture

David Cutting

University of East Anglia — Purplepixie Systems
David.Cutting@uea.ac.uk | dcutting@purplepixie.org

Abstract. When a web client needs to periodically refresh data held on
the server there are generally two approaches. Interval polling (“short
polling”), which is most commonly used, where the client repeatedly re-
connects to the server for updates, and a technique in which the HTTP
connection is kept open (“long polling”). Although work exists investi-
gating the possibilities of long polling few if any experiments have been
performed using an Apache MySQL PHP (AMP) stack. To determine
the potential effectiveness of long polling with this architecture an ex-
periment was designed and conducted to compare update response times
using both methods with a variety of polling intervals. Results clearly
show a marked improvement in timings with long polling, with the mean
response time down to 0.38s compared to a mean of just under the polling
interval for short polling. Issues of the complexity and load implications
of wide use of long polling are discussed but were outside the remit of
this experiment owing to a lack of resources.

Keywords: HTTP, PHP, MySQL, Long-Held Polling, long poll, short poll, in-
terval polling

1 Introduction

Within web systems there are commonly two alternative methods used to meet
a requirement for client updates, typical interval based polling and long-held
HTTP requests. Although work has been done in this area most deals specifically
with Java as the server-side technology so in order to establish the feasibility of
the less-common long-held method and evaluate relative performance in PHP an
experiment was proposed. This experiment formed part of the development of an
open-source extensible service desk system (FreeDESK) using Apache MySQL
PHP (AMP) architecture [Cutting, 2012].

1.1 Background

The Hypertext Transfer Protocol (HTTP) is a protocol built around the re-
quest/response paradigm whereby a client establishes a connection to a server,
makes a request, receives a response and the connection is then closed [Loreto et al., 2011].



As the server cannot therefore make connections to the client, for example
to notify it of events, the client must repeatedly poll the server for updates,
an inefficient method known as “short polling” involving significant overhead as
new connections are set up then torn down for each poll and client updates can
only be received once per polling interval [Loreto et al., 2011].

Short polling occurs “blindly” irrespective of a data update being present
and in order for low latency (high data/display accuracy) the polling interval
must be low meaning a high use of resources [Bozdag et al., 2007].

One approach to resolve this issue is the use of long-held HTTP polling
(“long polling”) a technique where the connection between the client and server
is held open until data is available and sent [Loreto et al., 2011]. Current exam-
ples of this technology in use include Google products such as gMail and gTalk
[Russell, 2006].

As many modern web-based systems (including the FreeDESK system) will
make use of asynchronous Javascript XML requests (AJAX) and will need a
mechanism to ensure screen updates are picked up and reflected within the user
interface, consideration must be given as to how this is accomplished; through
traditional short polling or using a held open connection with long polling. To
examine the difference in response times between these techniques an experiment
was performed.

Although Bozdag et al. [Bozdag et al., 2007] presents a similar experiment
this was constructed using Java as a base technology and also a messaging bus.
The architecture of the FreeDESK system being PHP and a relational SQL
database has a different structure so this experiment is necessary to check per-
formance against the specific FreeDESK architecture or any other system based
on AMP.

Long polling offers potential benefits with latency but also has inherent issues
including the server overhead from connections being held open, timeout prob-
lems where the connection is timed out by the client and/or server and caching
where request responses are cached in an intermediate proxy or web cache and
then returned time and again [Loreto et al., 2011].

There can be no doubt that the issue of server resources is serious especially
in large or shared deployments where many clients are using the same HTTP
server. Owing to a lack of resources and in order to keep the experiment focused
consideration of server resources are outside the scope of this experiment. This
was investigated by Bozdag et. al [Bozdag et al., 2007] who did produce some
quantifiable results with regard to server loading.

In this experiment timeout problems were mitigated with a built-in drop
and reconnect period whereby, after a specified period (25 seconds), before the
browser request or PHP script will themselves timeout, the connection is closed
with no data, causing the client to perform an immediate reconnect. To avoid
caching conflicts all data will be sent and received using HTTP POST rather
than HTTP GET which should not be cached by intermediate proxies. As an ad-
ditional safeguard a “nocache” field will also be passed containing a randomised
(and therefore different) string for each request which, though ignored by the



server, will mean the POST request contains different data each time and so
should definitely not be cached. Data returned from the server will have headers
marked to show it should not be cached and has “expired” already.

2 Hypothesis

Before conducting the experiment the following hypothesis were made both the
expected outcome (H1) and also a null hypothesis (H0).

H1: Long polling will offer significant reductions in latency and bring average
update response time to 0.5s or less

H0: Long polling will show no significant reductions in latency over short
polling

3 Experiment Design

To replicate the architecture of a production AMP system (such as FreeDESK)
as much as possible the experiment was designed with a PHP front-end and an
underlying SQL database. When a test session was in progress it would move
through stages of short polling (with 10 and 5 second polling intervals) and
long polling. A series of messages would be generated at randomised intervals in
the database and then provided to the test client which would then acknowledge
their receipt allowing the server to calculate a total “acknowledgement time” (the
time from the creation of the message to the acknowledgement being received
from the client).

Figure 1 illustrates a timeline using short polling to a system with an under-
lying SQL database and figure 2 shows the timeline in a long polling context.

In order to detect the effects of general network latency intermediate stages
on the client performed a “static fetch” where a small (65 byte) static XML file
was be fetched from the server with the client recording the time taken from
request to response and then passing this information to the server for inclusion
in the overall dataset. This allowed for identification of sessions with unusually
high general latencies that could either be removed from the dataset or adjusted
accordingly giving a truer estimate of latencies in the fetching only.

Stage Client Server
0 Registration Generate randomised ses-

sion ID and register with
server

Register session and
spawn message generation
thread

1 Static Fetch Perform three fetches of
static content and record
times

2 Short Poll (10s) Perform periodic (10s)
poll of server for new
messages, acknowledge
receipt immediately

Check for new messages
in SQL database and pro-
vide them, record ac-
knowledgement times



3 Static Fetch As 1
4 Short Poll (5s) As 2 with 5s period As 2
5 Static Fetch As 1
6 Long Poll Perform long polling, re-

cycling a new connection
on every response with
acknowledgement of any
data received

Keep connection alive and
periodically (500ms) poll
the SQL database for new
messages, recycling after
25s, record acknowledge-
ment times

7 Static Fetch As 1
8 Complete Send completion message

including static fetch
times

Mark session as com-
plete (so message thread
can exit), move message
data into completed table,
record static fetch times

Table 1: Long-Held HTTP Experiment Stages

The experiment was written in PHP and SQL for the server-side components
and HTML with Javascript for the client-side. The full experiment source code
can be downloaded from http://www.purplepixie.org/davestuff/sleepjax.

zip.

4 Experiment

The experiment was conducted over two weeks in early July 2012. The server
installation was on a Linux based server running Apache 2 located in a data cen-
tre in Manchester, England1. Clients connected from numerous locations in the
United Kingdom using a number of different web browsers, platforms and connec-
tions. This ranged from Internet Explorer under Windows on a fixed broadband
line to Android Browser on a mobile phone using GPRS/3G. The experiment
running on a Samsung Galaxy SIII phone can be seen in figure 3.

1 Operated by Melbourne Server Hosting http://www.melbourne.co.uk/



Fig. 1. Short Polling to HTTP Server with Underlying SQL Database (not to scale)

Fig. 2. Long Polling to HTTP Server with Underlying SQL Database (not to scale)



Fig. 3. Experiment Running in Android Browser on a Phone using WiFi



5 Results

Test Sessions 101
Messages Passed 2238
10s Short Poll Acknowledgement 4.8691s Mean

σ = 2.997
5s Short Poll Acknowledgement 2.3915s Mean

σ = 1.429
Long Poll Acknowledgement 0.3812s Mean

σ = 1.429
Static Fetch 0.0563s Mean

σ = 0.065
Table 2: Experiment Headline Results

Figure 4 shows the distribution of response times using the different polling
methods to the nearest 0.1s.

Fig. 4. Experiment Acknowledgment Times to Nearest 0.1s



6 Conclusion

From the results it can clearly be seen that the use of long polling provides a
significant reduction in latency with the mean acknowledgement time for a data
message dropping from 4.7s and 2.4s respectively for 10 and 5 second interval
short polling to a 0.4s for long polling.

Not only was the long poll mean under 0.5s but 85.27% (n=735) of long
poll messages were acknowledged in 0.5s or under. This data therefore strongly
supports the hypothesis (H1) and the null hypothesis (H0) can be discarded.

A portion of the experiment was to repeat a series of “static fetches” and
record results to allow for the identification of test sessions where high overall
network latency was a factor. It was found that, even with a large range of
connection methods ranging from corporate leased lines to GRPS, the static
times were consistent with a mean of 0.07s and a standard deviation of only
0.065. For this reason analysis of results against and considering static transfer
times was not completed.

An area of consideration not covered in this experiment but analysed in
Bozdag et al. [Bozdag et al., 2007] was server resource utilisation. An additional
resource constraint in the AMP context is that of repeated SQL database polling
by the HTTP server to find new data. Bozdag et al. [Bozdag et al., 2007] showed
that although the use of long polling in their experiment also offered a significant
reduction in latency times server load was greatly increased especially when
handling a large number of clients.

Unfortunately given resource constraints this experiment could not replicate
the effects of large numbers of clients connecting but it is plausible that server
load would increase inline or even ahead of the Bozdag et al. [Bozdag et al., 2007]
findings.

Additionally the architecture of a system to support long polling must be
necessarily more complex than one for short polling. Rather than allowing a
simple “refresh” of data after a polling intervals changes must be detected and
then passed to the client as and when they occur. This requires specific handling
at all levels of the system and the ability to record and identify changes to
data against an existing view of that data, potentially a complex and resource
intensive task.

For these reasons it is concluded that long polling can offer significant bene-
fits in latency and update speed but at the risk of much higher complexity and
load. Certain specific applications demanding near real-time updates but with
few clients, or one in which the server capacity can be easily scaled without in-
herent complexity and within cost limits may be very applicable to long polling,
but most generalised applications suitable for a wide range of deployment con-
figurations are not easily applicable.

Further work should include a more detailed analysis of the server load pro-
files against differing numbers of clients and complexities of systems to build a
broader view of the relative costs and benefits of using long polling.



Notes

This paper is a technical working paper primarily containing the findings already
contained in [Cutting, 2012], just published separately for clarity. The author is
affiliated to both Purplepixie Systems and the University of East Anglia. This
paper and the source dissertation are c© Copyright 2012-2015 David Cutting.
Published November 2015.

References

[Bozdag et al., 2007] Bozdag, E., Mesbah, A., and Van Deursen, A. (2007). A compar-
ison of push and pull techniques for ajax. In Web Site Evolution, 2007. WSE 2007.
9th IEEE International Workshop on, pages 15–22. IEEE.

[Cutting, 2012] Cutting, D. (2012). Free open-source extensible
helpdesk (freedesk). Masters dissertation, University of East Anglia.
http://freedesk.purplepixie.org/FreeDESK-Dissertation-FDL.pdf.

[Loreto et al., 2011] Loreto, S., Saint-Andre, P., Salsano, S., and Wilkins, G. (2011).
Rfc 6202: Known issues and best practices for the use of long polling and streaming in
bidrectional http. http://www.ietf.org/rfc/rfc6202.txt. [Online; accessed July
2012].

[Russell, 2006] Russell, A. (2006). Comet: Low latency data for browsers. alex. dojo-
toolkit. org.


